The Effect of Cycling on the Cost of IPP Power

Assumptions

- Fiscal Year 2008-09 IPA Annual Report used as economic baseline
- 95% Output Factor
- 2.7% EFOR
- Same amount of planned outages, five weeks per year for the station
- Replacement energy for forced outages
- Economic factors:
- \$40/MWH for replacement energy
- \$1.95/MBTU for fuel constant

12/28/2010

Financing

Fuel

INTERMOUNTAIN GENERATING STATION - Unit 1

2009-10 Operating Net Unit Heat Rate Curve

O&M + Capital

Replacement Energy

Total Cost of Power

Estimated Cost of Power \$/MWH for Various Output Factors

	95%	85%	75%	65%
Financing	25.1	28.9	32.8	39.4
Fuel	18.9	20.0	21.1	22.3
O&M + Capital	9.2	10.9	13.2	18.1
Replacement Energy	1.2	1.8	2.7	4.7
Total	54.4	61.6	69.8	84.5

Cycling or Steady State?

Cycling and Cost of Power

Other Considerations

- No permitting or environmental constraints that would interfere with cycling
- CO₂ emissions per MWH will increase:
- 1950 tons/MWH at 95% Output Factor
- 2300 tons/MWH at 65% Output Factor
- In order to develop more accurate cycling costs, developed and a complete engineering study specific cycling patterns would have to be would need to be performed.

12/28/2010